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Overview

In the first part we will see simple methods (basically
through examples)
i. I'he counting method
2. I'he first moment method
3. IIhe deletion method
4, Iihe second moment method
5. Derandemization with conditional probabilities

The second part Is THE part(y):
1. General Lovasz Local Lemma
2. Other (usual and helpful) forms of LLL
3. Constructive proof of LLL




Counting Expanders

We will relay on Pr(Q(x)) > 0= 3x0(x)

Definition: Anl (71,d,8,c) OR-concentrator s a bipartite
multigraphi G(L, R £)'such that:
m Each vertex in £ has degree at most d.

m Forany SCL:SIKa-n—INS)>clS|

Theorem: Thereis an integer /1, such that for alll >3,
there is an (n,18,1/3,2) OR-concentrator:

We will choose a random graph from a suitable
probabilistic space and we will show that it has positive
probability of being an (n,18,1/5,2) OR-concentrator.




Counting Expanders

Proof: Our random bipartite graph will have
s Vertexset V =LUR

s Each v € L “chooses” dtimes a neighbor (in R) uniformly
(multiple edges become one edge).

Let £ be the event that a subset with: s\vertices ofi £ has
fewer than ¢s neighbors.

We will bound PrlEs] and then sumi up: for all the
values s<an to get a bound on the probability of
failure

Fixan SCL of size sand a T C R of size cs.




Counting Expanders

s [here are Z] ways off choosing S

n

s [here are CS] ways off chooesing /-

a [1he prebability that 7/ contains all neighbers of Sis g{ﬁ] s

s <222 [ e

S CS n

Simplifying for a=1/3, c=2, d=18 and using s < an We get
S o e+l _d—c S 1 = e+l d—c S C ‘ c+1 S 2 : 3 S
[—] ec [—] e c [5] (36) [E] (36)

Pr(E.]<
rlEg | < » 3
Summing up we get  prf failure] < Pr[Es] <1

< < <




The First Moment Method

At first we design a “thought experiment” in
which a random: process plays airole

We analyze the random experiment and draw! a
conclusion Using the first moment prirnciplé:

ElIX]|<t=Pr(X <1)>0




Example 1

Theorem:
For any undirected graphi G(V, £)with 72 vertices and /77 edges there
IS a partition of the vertex set into two sets A, B such that

I{{u,v}EEIuEA/\vEB}IZ%

Proof:

s Assign each vertex independently and equiprobably im either A
or B.

n Let X, =1 WNEen {u,v}has enapoints in diierent sets and
X, y=00therwise: Pr[ X, , =1]=1/2= E[X , ,1=1/2
= By linearity of expectations:
Ell separated edges|] = Z E[X ,  ,1=m/2

{u,vicE




Example 2

Theorem:

[For any set of /77 clauses there is a truth assignment that satisfies at
least my/2 clauses. (a clause is (x, V—x, Vx, V...V x,) )

Proof:
a [ndependently set each variable' /RUE or FALSE

m For each clause let Zz=1 I the /477 clause s satisfied and Zz=0
otherwise

= If the /-t clause has kliterals: Pr(Z, =1)=1—2""

= Forevery clause: E[Z.]>1/2
= [he expected number of satisfied clauses is

E[szi]:ij[zi]z%




Example 3

Theorem:
Any instance of k-Sat with <2¢ clauses is satisfiable

Proof:
n [ndependently set each variable 7RUEor FALSE

m| [FOr each clause let Z=01f the /~thclause is satisfied
and Z=1 otherwise: Pr(Z =1)=2°

s For every clause: E[Z.]=2"
s [he expected number of unsatisfied clauses Is

E[zm:Zl.] = zm:E[Zi] =m2 " <1




The Deletion Method

(*sample and modify” method)

We want te prove that a combinatorial
object Fexist

1. At first we show: that there exist ani £~ very
“close” to £~

2. I'hen we change £ to £ and show that the
probability off existence remains positive




Turan's I'heorem®

Theorem: Let G(V,£E)be a graph. Iff /[V/=nand /E/=nk/2 thena(G) > n/2k

Proof: Using| probabilistic arguments we will prove, the existence of a
subset that has many mere vertices than edges

Deleting vertices corresponding to these edges we det an Independent
set.

Let S’ be a subset off I/containing each vertex with proebability p(to be
fixed later). We have £//S//=np

Let G” be the subgraph induced by S.
For every e € E define Y.=1if ec E(G') and Y,=0 otherwise. Then:

E[Y,]=p’

(4




Turan's I'heorem®

Let Y=/E(G’)/ the number of edges in the induced
subgraph. Then:

E[YI=E[) Y1=) E[Y]= %pz

Deletion time: We drep all edges (by: deleting vertices)

from G and we get ani independent set S We have:

E[IS*I]ZE[ISI—Y]:E[ISI]—E[Y]:np—%p2

We fix pto maximize this expression. It's a parabola,
which: attains its maximum at p=1/k and so

E[l S*1] > —=
2k




Erdos’'s ITheorem

Definitions:

i, Tlhe chromatic number, x(G), of a graph Gis the minimum number
of colors needed! to color the vertices of G such that adjacent
vertices have diffierent colors.

2. IZy d(G)we denote the cardinality off a maximun independent set of

5. Ihegirth, g(G), of a graph G Is the length off a shortest cycle in G

Theorem: For any naturals k; / there exist aigraphi G such that: x(G) = k
and g(G) >1.

We will find ai graph that has
o Small a(G)
= Not many “bad” cycles of length </ (that will be destroyed!)

In the end we'll use that |V (G) < x(G)a(G) and “force” x(G) to get big




Erdos’'s ITheorem

Proof: We choose a random graph G,, (/7 vertices and each edge chosen
independently with probability p).

s Small pgives large independent sets and! thus small chromatic number
m lLarge pgives small cycles.

Let p=r?* and we'll fix &later

Let (5;,...,0,) an ordered seguence of vertices. The probability of O, -
bch- Py being a eycleris g5 et Yo=7 wihen this happens and Yz=0.
otherwise

[For aisubset 5={D,,...,0.t of I/there are ¢/ ways te form cyclic ordered

n

seguences withi the vertices of B- There are| | ways of choosing 5.

C

Let X be the number of cycles off length/ cin G. Combining we get:

1w | (e
e _[c] e

BC{V}©

E[X |=E

b,




Erdos’'s ITheorem

Let X be the number of cycles of length no greater than /

l [ | ' : l —
E[X]:E[E;XC]:Z ’Z](l 2) Plzz(n_l)vzzp <Zn —(n i <Z

=3 i=3 i=3

B M k I - I. ) E[X] 2 l n@i l n@i—l w
y Markov's Inequality: Pr(X >n/2) < <=y —=)" <(—2)n
nl2 nz3 21 IS0

Fixing 6<1//we get: Pr (X >n/2)=0

n—oo

Let Y'be the number of independent sets ofi size y/(to be fixed later) in
G. By Markov's inequality:

Pr(a(G) > y)=Pr(Y >1) < E[Y]= ‘ (1— p)’OV"2 < ¥ (e Py 02

Now let y= ilnn. We get: Pr(a(G) > y) < (ne ") <(ne * ) =

ity (L
p 17 N [\/Z

SO Pr (a(G)> y)=0

n—oo

P
2




Erdos’'s ITheorem

By taking| /7 large enough we manage both events
m a(G)>y and
m X Z nl/?2 ,

to have probability: <1/2.
So there is a G such that: a(G)< y and X <n/2

Deletion time: We remove one vertex from each off the at most n/2
“bad” cycles. Thus we get a G" withg(G) =1, mere than n/2 vertices
and a(G") <a(G)

! 0
Putting it all together: (G > G S WGIZ J ni2 _ n

— > > = > k for large
enough n. a(G)) a(G) ~ 2lnn  6lnn

G’ is our Graph.




The Second Moment Method

s Method based on Chebysev's ineguality:

Pr(l X —E[X]>1) < VajEX ]

reaching conclusions using! concentration results

s Useful tool for determining the threshold
function of an event A:
n Below threshold, Pr(A4)tends to 0
m Above it, Pr(A)tends to 1




Distinct sums

Let A={aq,,a,,....a,}. Define S(I)={s(I):I C A}, where s(I)
IS the sum of the elements of /.

Question: How:' large can a subset off {7,... /., with distinct
sums be?

One of size k =|logn|+1 IS A={2""li=1,...k}.
On the, other hand every sum s at most A77'.and so
2" <kn=k <logn-+loglogn+ O(1)

Theorem: if AC/{l,...,n} has distinct sums then
|AlI<logn+3loglogn+ 0O()




Distinct sums

Proof: To get an A “close” to the upper bound we need
s S(A) “close” to {1,..., kn}
= [he sums of the subsets of A to be spread evenly.

Using Chebysev's inequality: we'll prove that most ofi the
sUmS are around the middle.

Picking at random a sum fromi S(A4)'isi equivalent to picking
a random subset /o A and then computing its sum.

Let A={q,,....,a,} and X. =1%& a, € I. Let X=5(7). We have
k k
E[X]=) aE[X,] :%Zai
i=1 =




Distinct sums

Var(X): E[Xz]:E[(Zal.Xi)z]—E[(Z X2 +2 ) aa XX, 1=

1<i<j<k

Za E[X, ]+2 Z a,a, E[ X, X 1= Za + Z a,a;

1<i<j<k 1<l<]<k

E[X]' =~ Za + S aa

1<1<]<k

= var[X]= E[X"]-E[X] = Za %

By Chebysev's inequality

Pr(l X — E[X]1> 2V X < —2X ) prax — ELx 11> i) < -
(2\/Var[X]> 4

Thus at least 34 of the sums are inside an interval of length 2,k

Therefore %2]‘ < Znﬁ =k <logn +%log logn+ O()




Threshold for Cligue

Theorem: Let G, ,a graph and A the number of cligues with 4 vertices.
s If p=0(n 2/3) then Pr (K >1)=
= If p=w(/727) then' p; (Kzl)—l

1n—00 n

Proof: Let {C,,...,C, }be the enumeration of the|4| 4-tuples, and X =1
when| C mduces a 4-c/igue and X =0 otherwise.

24

4 —o(n¥'3)

: 7 n4 6
= In the first caseK:ZXi,so E[K]L4 p* =~ and
i=1
p=o0
Pr(K>1)< E[K]zlimni —

n—oo n—oo n—oo

= Unfortunately in the second case we get

n4p6 p=w(n
Pr(K>1)< E [K]~ lim p = o0

n—oo n—oo n—oo

Chebysev’s inequality proves useful. After bounding Var| K] we can use

the fact:
Var| K]
Pr(K =0)<Pr(l K —E[K]> E[K]) < T

—2/3)




Threshold for Cligue
To compute Var/K/[=E[K[-E[KF
s F/KP: E[K) = (Zt: E[X,])’ = Zt:E[X,.]Z +) E[X,]E[X ]

LS S E[K2]=E[(zt:X,.)z]zEE[XfHZE[X,X,-]

i=]j

1. If IGNC K1 then E[X, X 1= E[X,]E[X ]

n|(4|(n—4

2. If 1GNCI=2 then E[X,-Xj]zp-pS-pS — 'l We count [4] 2] 5 ]
such Instances.

. IF 1GNC;1I=3 then E[X. X ]=p’ p'-p’ = p’. We count |" 4l(n—4
such instances.

4)13)1 1
Thus 1 t
Var[K1=> E[X1-) E[X,]'+> E[X,X,1-> E[X]E[X ]=
i=1 =l i= j i=j
VarlK] < n n n|(4||n—4 u n|(4|(n—4| ,r=en-213 (o) = B(EIXT)
P42 Tlall2)l 2 1P Tlalls)l 1 |)F T AP0
Finally: lim Pr(K = 0) < lim varlie =0

= o (E[K])"




Derandomizing

F boolean formula ini CAVF with variables x,... x..

Set x=Trueor Fa/se equiprobably and let X' denote the number of
unsatisfied clauses.

Supﬁose that £/X/< 1 (e.g. k-Sat instance withi less than 2 clauses), so
there Is a truth assignment that satisfies the formula

Derandomize..:
s Set x, = 7ruesimplify £and compute £/X/ x,=Truej.
m Set x;, =/Fa/sesimplify Fand compute £/X/ x,=Falsej.

It is E/X/ x,=True]<1 or E[X] x,=False/<I.
Keep a value of x, that keeps £/X/ x,/<1.

Repeat for all variables and you get £/X/ x;,..., X, /<1.

The values for x,,..., x, Is the satisfying truth assignment




Conditional Probabilities

Generalizing the previous technlque we get the “method of
conditional probabilities”.

In generall it is something; like this:

o );_ IS a 7r_andom variable determined by a seguence of random trials
PR

s We want to find a set of outcomes such that X < E[X |

s Theremustbeat (E[XIT =1]<E[X].We find it.

s We repeat to find the outcome

t EXIT, =¢,..T_=t_,T. =t ]<E[XI|T, =¢,...T_ =t _ < E[X]

= Attheendweget E[X |7, =¢,,...T =t 1< E[X]. But there is no
randomness left thus we have determlned a desired set of
outcomes for which X < E[ X |

In order to succed we need
1. “Small” number of trials
2. The computations for determining £ can be carried out efficiently




Viax-cut

Theorem: For any undirected ?raph G(V, E)with n vertices and m
edges there is a partition of the vertex set into two sets A, B such

that m

I{{u,v}EEIuEA/\vEB}IZE

Let C(A,B) denote the number of edges between A, B. We have
E[C(A, B)] z% when vertices equiprobably go either to A or B:

= o begin with: v, goes to A (or 5) and we get E[C(A, B)|v,]= E[C(A, B)]

o Flg)r the intermediate steps when the k first nodes are in some set
then

s \We can compute the cut that these vertices “give” in the final cut

n Ehach of the edges that are “incomplete™ have 2 probability to be in
the cut

s S0 E[C(A,B)lv,...,v,v,,, €A] and E[C(A,B)v,,...,v,,v,,, € B] can be
computed efficiently. We keep the big one.

We'll do 2 steps to fully determine A, B. Each step needs polynomial
time




The Lovasz Local Lemma

Let A,,...,A, be some “bad” events and for all 7 Pr(A) < %

IiF A are pairwise independent them we could assert that hone of these
will happen with: probability:

Pr(4,N..NA,)= Pr( )-Pr(A,14,)-. -Pr(A_nJlm...mAnl)zpr(Xl)-...-Pr(A)>o

n

(1-Pr(4))) (1 Pr(A2IA1>)Y (1-Pr(4,140..n4,))

The Lovasz l.ocal Lemma states that if each event is dependent to “few"™
other events then there is a probability that none of this will happen.

Definition: Dependency graph of events A,,...,A.1s a digraph G infwhich
= [or every A there is a vertex corresponding to it
s A is independent to all other A’s such that (4,4,)is not an edge of G

Theor_em: Let G(V E)be a dependency graph of the events A,,..., A.. Then

>TTa-x)

Vidx, : Pr(A) <x, [] A—x)) ;»Pr[ﬂZi
_ _ =

(i,j)eE




Lovasz lLocal Lemma Proof

Let § C{l,...,n}. By induction on k=/S/ we will show that for any S and
i S+ Pr(A |ﬂj€SAJ.) <

For k=0'the result follows from Vidx, :Pr(A)<x, [] d—x)

(i,))EE

For the inductive step we want to compute Pr(A |ﬂ A)<x, Separate S
to S,={jesS:G,))eE}and S,=5\§

Pr(A N, 41N, 4)

( JES, AJ | JES, A])

By definition:  Pr(A () _A4)=

Numerator: Pr(4 N[, 41, 4 )<Pr(A 1N, 4,)=Pr(4)<x [] d-x)

(i,j)EE

Denominator: (), 4,1, 4,) =T, A=x)>]T,,..0-x)

To complete the proof: )
Pr|()A |=(1—Pr(4)(1—Pr(A, | A))...A=Pr(A, 1 A) > [1—x)




Other forms of LLL

o The basic form: If
L Vi:Pr(A)< p<l1
2. For all 7 A, is mutually independent of all but at moest d off the other events

3, 4pd <1 (or ep(d+1)<1)
Then with positive probability none ofi the events will occur

o Tihe Asymmetric fiorm: If for all 7
7 A;is mutually independent of A\ (D, U A,) for some D,

> Pra)< K
; EAjeDiPr(A,.)g%

Then with positive probability' none ofi the events will occur

o The weighted form: If
i A:is mutually independent of A\(D;,UA;) for some D,
2. There are {;,...,I, and p:0<p< % such that for all 7

Pr(A) < p"

1 ti
> 2P <)

Then with positive probability none of the events will occur




Some Proofs

s [he general (compact!) form

:>Pr[ﬂA7

Vidx, : Pr(A) <x, [] d—x))

(i,J)EE

>H(1 X;)

P<s £,>0

s For the Weighted LLL set x=2p)"=x <) =1-x)>e "

x [[—x)>x [ e >2"Pr(A)-e R s Pr(A,)-e"® > Pr(A)
s For the Asymmetric LLL set x;, =2Pr(A) = x; < % =>(—x)>e "
This way:
s T A-x)zx [] ™ 22pa)-e 2™ > 2Py > Pr(A)

A;€D; )

J

s For the Basic LLL we can assume* d>1 and then Pr4)< 4
clyle D en PHAY S pd =(Jpdpd <




Ramsey numbers

Definition: R(k,/)is the minimal n such that if the edges of the
complete graphi on /7 vertices, K, are colored Redor 5/lue, then
there is jas a subgraph)) a /(kwiﬂw all edges Redor a K with all
edges bLlue.

For example R(3,3)>5. In particular R(3,3)=6
() O) ®

® ()
) ®

Using the basic form of the Lovasz Local Lemma we will get a lower
bound for R(k,k).

k (k+1y
Theorem: R(k,k)>n~-=2 7*(1+0(Q1))

e




Ramsey numbers

Proof: Color the edges off A uniformly at random.

For every S c V.,|S |= k let A.be the event that Sinduces a
monochiromatic k-cligue; It is [ k] :
1] 2)”

Pr(A;) = [E

et GIbe a dependency graph of the events A. The events A, A., are
dependent only If* S'and S share at least one edge. Thus

kifn—2
d=A(G) <
21 k—2

By Lovasz lL.ocal Lemma if 4pd<1 then there is positive probability that
no monochromatic K, exists.

4

k

L

The maximal n for which the above holds is our lower bound.

4pd <1< 4. <1




Coloring Hypergraphs

A hypergraph A=(V,E)is a generalization of a graph where
Eis EC2". His:
= K-Uniformif eéach edge contains exactly’ k< vertices and
m K-regu/ar i every vertex participates in exactly £ edges

LLet A/ be al hypergraph. Graph /A has property, Bl there
exist a 2-coloring of the vertices such that none of the
edges Is monochromatic

Theorem: Let A be a K-uniform, k-reguiar hypergraph.
Then for all k>8, H'has property B..




Coloring Hypergraphs

Proofi: Color the vertices uniformly at random and let A be
the event that edge 7 Is monochromatic.

k—1
= His k~uniform. Thus,for alll 73 Pr(A,) = (%) =P

s His k-re%u/ar, SO each edge intersects with at most
K(k-1)other edges and thus: d < k(k +1)

Getting it all together:
k—1
vk >8:ep(d+D<el Vo) (k(k+1)+1)<1

So using Lovasz Local Lemma:

(14,

f

Pr >0




Edge-disjoint Paths

Assume we have a network and /2 pairs of users who wish
to communicate via edge-aisjornt paths.

Each pair el Users, /, has a collection / off /77 possible
paths firom; which It cheoses his path.

I the poessible patis do not: share too many edges then
there Is a set of edge-disjoint paths that does the work.

Theorem: If any path in £ shares edges with no more
than 4 paths ini £ (j =i ) and 876/ <1 then there are 72
disjoint paths connecting the 72 pairs




Edge-disjoint Paths

Proof: Each pair chooses equiprobably one path from his /7
possible paths

Let £ denote the event that the paths of /and jshare a
common edge. It is
: p=PuE, )<k

Event £ ; could be depended only to events £, or £ .. SO
a<2n.

Snk
Itis 4dp <= <1.So using LLL we get: Pr
m

> ()

NE.

E V]




Expanders

Definition: A graph G(V,£)is called f-expander if
VS cv[|5|§5|\/|—> E(S,§)zﬁ|5|]

We will show: that iff we have a S-exparnder G(V,E), we
can partition £to £, £, se that both) G,(V £,)and

G,(V, £;) ane nearly: al (/2)-Exparder:

Theorem: Let €50, r=5and [ sufficiently large in terms of
g . I GIs an r-reguiar [-expander then there is a
partition E(G) = E, UE, such that each £ induces a

B —€)-expander.

Proof: We will' (as usual) place each edge equiprobably: to
one of the two sets. We will “define” what is “bad” and

use the weighted version of LLL.




Expanders

For each S CV (connected) of size|SI<51V |, let A, be the event that S
fails™ E(S,8)<BG—0)ISI|V|E,(S,8) < BG—e)IS |

It is: Pr[E,.(SE) <BE-e)ls |] - Pr[ﬁ%lS |—E(S,S)>¢eB1S |]

It s like throwing [/S/ coins and [£,/=/heads|=/E ], [E5/=/tals/=[E7)/.

Pr|3LISI1-E(S,S)>eB1SI|<Pr|B41S1-E/(S,5)> IS
Pr[ﬁ%lSl—Eé(S,§)>sﬁlSI] _ Pr[E{(S,g)—ﬁ%lesﬁlSI]

E[(S,8)+E})(S.5)=pISI
So:

Pr[A,]< ZPr[ﬁ%l SI—E(S,S)>¢eB1S |]§Pr[| BLISI—E/(S,S)>eB18 |]

i=1,2 1,2

Using Chernoff Bound:

2921012
e23218|
- —%gzﬁm

PrlA]<Pr|l181S1-E/(S,S)>cp1S||<2e %A < 2¢° =p"°

1_1S|

ﬁ_n




Expanders

G is r-reguiar. It is known... that in this case every vertex lies in at

rt

5

ert

most < [—] = (er) connected subsets of size t.

5

A. IS dependent to at most (er)' |S| other events A.. for which /S/=t

We have
2 5
e
. P{A]<2¢ 3 =p
£ nl/2 nl/2 1223 | S |
= > (2p)" S1D> @p)(er) =Sy (2re ©7) <
Ag €Dy t=1 t=1

o) 1-2¢%3 1 3log(10er)
as long as 2re < A (fors > S )

The weighted version of LLL does the work




