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OverviewOverview

In the first part we will see simple methods (basically In the first part we will see simple methods (basically 

through examples)through examples)

1.1. The counting methodThe counting method

2.2. The first moment methodThe first moment method

3.3. The deletion methodThe deletion method

4.4. The second moment methodThe second moment method

5.5. DerandomizationDerandomization with conditional probabilitieswith conditional probabilities

The second part is THE The second part is THE part(ypart(y): ): 

1.1. General Lovasz Local LemmaGeneral Lovasz Local Lemma

2.2. Other (usual and helpful) forms of LLLOther (usual and helpful) forms of LLL

3.3. Constructive proof of LLLConstructive proof of LLL



Counting ExpandersCounting Expanders

We will relay onWe will relay on

Definition: An Definition: An ((n,d,a,cn,d,a,c) OR) OR--concentratorconcentrator is a bipartite is a bipartite 
multigraphmultigraph G(L,R,E)G(L,R,E) such that:such that:
�� Each vertex in Each vertex in LL has degree at most has degree at most dd
�� For any For any 

Theorem: There is an integer Theorem: There is an integer nn00 such that for all such that for all n>nn>n00
there is an there is an (n,18,1/3,2) OR(n,18,1/3,2) OR--concentratorconcentrator..

We will choose a random graph from a suitable We will choose a random graph from a suitable 
probabilistic space and we will show that it has positive probabilistic space and we will show that it has positive 
probability of being an probability of being an (n,18,1/3,2) OR(n,18,1/3,2) OR--concentratorconcentrator..
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Counting ExpandersCounting Expanders

Proof: Our random bipartite graph will have Proof: Our random bipartite graph will have 
�� Vertex set Vertex set 

�� Each          Each          ““chooseschooses”” dd times a neighbor (in times a neighbor (in RR) uniformly ) uniformly 
(multiple edges become one edge).(multiple edges become one edge).

Let Let EEss be the event that a subset with be the event that a subset with ss vertices of vertices of LL has has 
fewer than fewer than cscs neighbors.neighbors.

We will bound             and then sum up for all the We will bound             and then sum up for all the 
values              to get a bound on the probability of values              to get a bound on the probability of 
failurefailure

Fix an          of size Fix an          of size ss and a         of size and a         of size cscs.  .  
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Counting ExpandersCounting Expanders

�� There are     ways of choosing There are     ways of choosing SS

�� There are      ways of choosing There are      ways of choosing TT

�� The probability that The probability that TT contains all neighbors of contains all neighbors of SS is  is  

Thus Thus 

Simplifying for a=1/3, c=2, d=18 and using         we getSimplifying for a=1/3, c=2, d=18 and using         we get

Summing up we get  Summing up we get  

n

s

     

n

cs

     
ds

cs

n

 ≤   
1

1Pr[ ]

s
ds s cs ds d c

c d c

S

n n cs ne ne cs s
E e c

s cs n s cs n n

− −

+ −
                         ≤   ≤ ≤                                           

s an≤

( ) ( )
1 1 18

1 31 11 2
Pr[ ] 3 3

3 3 3

s s s s
d c d c d

cc d c c d c

S

s c
E e c e c e e

n

− − − −
++ − + −

                           ≤ ≤ ≤ ≤                                           

Pr[ ] Pr[ ] 1S

S

failure E≤ <∑



The First Moment MethodThe First Moment Method

1.1. At first we design a At first we design a ““thought experimentthought experiment”” in in 
which a random process plays a rolewhich a random process plays a role

2.2. We analyze the random experiment and draw a We analyze the random experiment and draw a 
conclusion using conclusion using the first moment principlethe first moment principle: : 

[ ] Pr( ) 0E X t X t≤ ⇒ ≤ >



Example 1Example 1

Theorem:Theorem:

For any undirected graph For any undirected graph G(V,E)G(V,E) with with nn vertices and vertices and mm edges there edges there 

is a partition of the vertex set into two sets is a partition of the vertex set into two sets A, B A, B such thatsuch that

Proof:Proof:

�� Assign each vertex independently and equiprobably in either A Assign each vertex independently and equiprobably in either A 

or B.or B.

�� Let XLet X{u,v}{u,v}=1 =1 whenwhen {{u,vu,v} has endpoints in different sets and } has endpoints in different sets and 
XX{u,v}{u,v}=0 =0 otherwise:otherwise:

�� By linearity of expectations: By linearity of expectations: 
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Example 2Example 2

Theorem:Theorem:

For any set of For any set of mm clauses there is a truth assignment that satisfies at clauses there is a truth assignment that satisfies at 

least least m/2m/2 clauses. (a clause is                                )  clauses. (a clause is                                )  

Proof:Proof:

�� Independently set each variable Independently set each variable TRUETRUE or or FALSEFALSE

�� For each clause let For each clause let ZZii=1 =1 if the if the ii--thth clause is satisfied and clause is satisfied and ZZii=0 =0 
otherwiseotherwise

�� If the If the ii--thth clause has clause has kk literals: literals: 

�� For every clause: For every clause: 

�� The expected number of satisfied clauses isThe expected number of satisfied clauses is
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Example 3Example 3

Theorem:Theorem:

Any instance of Any instance of kk--SatSat with with <2<2kk clauses is clauses is satisfiablesatisfiable

Proof:Proof:

�� Independently set each variable Independently set each variable TRUETRUE or or FALSEFALSE

�� For each clause let For each clause let ZZii=0 =0 if the if the ii--thth clause is satisfied clause is satisfied 

and and ZZii=1 =1 otherwise: otherwise: 

�� For every clause: For every clause: 

�� The expected number of unsatisfied clauses isThe expected number of unsatisfied clauses is
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The Deletion MethodThe Deletion Method
((““sample and modifysample and modify”” method)method)

We want to prove that a combinatorial We want to prove that a combinatorial 
object object FF existexist

1.1. At first we show that there exist an At first we show that there exist an FF’’ very very 
““closeclose”” to to F.F.

2.2. Then we change Then we change FF’’ to to F F and show that the and show that the 
probability of existence remains positiveprobability of existence remains positive



TuranTuran’’s Theorem*s Theorem*

Theorem: Let Theorem: Let G(V,E)G(V,E) be a graph. If be a graph. If |V|=n|V|=n and and |E|=nk/2|E|=nk/2 then then 

Proof: Using probabilistic arguments we will prove the existenceProof: Using probabilistic arguments we will prove the existence of a of a 
subset that has many more vertices than edgessubset that has many more vertices than edges

Deleting vertices corresponding to these edges we get an indepenDeleting vertices corresponding to these edges we get an independent dent 
set.set.

Let Let S  S  be a subset of be a subset of VV containing each vertex with probability containing each vertex with probability pp (to be (to be 
fixed later). We have fixed later). We have E[|S|]=E[|S|]=npnp

Let Let GG’’ be the subgraph induced by be the subgraph induced by SS..

For every         define For every         define YYee=1=1 if               and if               and YYee=0=0 otherwise. Then: otherwise. Then: 
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TuranTuran’’s Theorem*s Theorem*

Let Let Y=|E(GY=|E(G’’)|)| the number of edges in the induced the number of edges in the induced 

subgraph. Then:subgraph. Then:

Deletion time: We drop all edges (by deleting vertices) Deletion time: We drop all edges (by deleting vertices) 

from from GG’’ and we get an independent set and we get an independent set S*.S*. We have:We have:

We fix We fix pp to maximize this expression. Itto maximize this expression. It’’s a parabola, s a parabola, 

which attains its maximum at which attains its maximum at p=1/kp=1/k and so and so 
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ErdosErdos’’s Theorems Theorem

Definitions:Definitions:

1.1. The chromatic number, The chromatic number, x(Gx(G)), of a graph , of a graph GG is the minimum number is the minimum number 
of colors needed to color the vertices of of colors needed to color the vertices of GG such that adjacent such that adjacent 
vertices have different colors.vertices have different colors.

2.2. By By a(Ga(G)) we denote the cardinality of a maximum independent set of we denote the cardinality of a maximum independent set of 
GG..

3.3. The girth, The girth, g(Gg(G)), of a graph , of a graph GG is the length of a shortest cycle in is the length of a shortest cycle in GG

Theorem: For any naturals Theorem: For any naturals kk, , ll there exist a graph there exist a graph GG such that:               such that:               
and             . and             . 

We will find a graph that has We will find a graph that has 

�� Small Small a(Ga(G))
�� Not many Not many ““badbad”” cycles of length <cycles of length <ll (that will be destroyed!)(that will be destroyed!)

In the end weIn the end we’’ll use that                             and ll use that                             and ““forceforce”” x(Gx(G)) to get bigto get big
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ErdosErdos’’s Theorems Theorem
Proof: WeProof: We choose a random graph choose a random graph GGnpnp ((n n vertices and each edge chosen vertices and each edge chosen 

independently with probability independently with probability pp). ). 
�� Small Small pp gives large independent sets and thus small chromatic numbergives large independent sets and thus small chromatic number

�� LargeLarge pp gives small cycles.gives small cycles.

Let Let p=np=nθθ--11 and weand we’’ll fix ll fix θθ laterlater

Let (Let (bb11,,……,,bbcc) an ordered sequence of vertices. The probability of ) an ordered sequence of vertices. The probability of bb11 -- bb22 --……--
bbcc -- bb11 being a cycle is being a cycle is ppcc. Let . Let YYBB=1=1 when this happens and when this happens and YYBB=0=0
otherwiseotherwise

For a subset For a subset BB’’={b={b11,,……,,bbcc}} of of VV there are there are c!c! ways to form cyclic orderedways to form cyclic ordered

sequences with the vertices of sequences with the vertices of BB’’. There are      ways of choosing . There are      ways of choosing BB. . 

Let Let XXcc be the number of cycles of length be the number of cycles of length cc in in GG. Combining we get:. Combining we get:
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ErdosErdos’’s Theorems Theorem
Let X be the number of cycles of length no greater than Let X be the number of cycles of length no greater than ll: : 

By MarkovBy Markov’’s inequality:                               s inequality:                               

Fixing Fixing θθ<1/<1/ll we get:we get:

Let Let YY be the number of independent sets of size be the number of independent sets of size yy (to be fixed later) in (to be fixed later) in 
GG. By Markov. By Markov’’s inequality:                      s inequality:                      

Now let               . We get:Now let               . We get:

So So 
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ErdosErdos’’s Theorems Theorem
By taking By taking nn large enough we manage both eventslarge enough we manage both events

�� andand

�� ,,

to have probability <1/2.to have probability <1/2.

So there is a G such that:            andSo there is a G such that:            and

Deletion time: We remove one vertex from each of the at most n/2Deletion time: We remove one vertex from each of the at most n/2
““badbad”” cycles. Thus we get a Gcycles. Thus we get a G’’ with          , more than n/2 vertices with          , more than n/2 vertices 
and and 

Putting it all together:                                        Putting it all together:                                        for large for large 
enough n.enough n.

GG’’ is our Graphis our Graph..
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The Second Moment MethodThe Second Moment Method

�� Method based on ChebysevMethod based on Chebysev’’s inequality:s inequality:

reaching conclusions using concentration resultsreaching conclusions using concentration results

�� Useful tool for determining the threshold Useful tool for determining the threshold 

function of an event function of an event AA::

�� Below threshold, Below threshold, Pr(APr(A)) tends to 0tends to 0

�� Above it, Above it, Pr(APr(A)) tends to 1 tends to 1 
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Distinct sumsDistinct sums

Let                        . Define                           , Let                        . Define                           , where where s(Is(I))
is the sum of the elements of is the sum of the elements of II..

Question: How large can a subset of Question: How large can a subset of {1,{1,……,n},n} with distinct with distinct 

sums be?sums be?

One of size                     is                            . One of size                     is                            . 

On the other hand every sum is at most On the other hand every sum is at most knkn and soand so

Theorem: if                  has distinct sums then Theorem: if                  has distinct sums then 
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Distinct sumsDistinct sums

Proof: To get an A Proof: To get an A ““closeclose”” to the upper  bound we needto the upper  bound we need

�� S(A) S(A) ““closeclose”” to {1,to {1,……,,knkn}}

�� The sums of the subsets of A to be spread evenly.The sums of the subsets of A to be spread evenly.

Using ChebysevUsing Chebysev’’s inequality wes inequality we’’ll prove that ll prove that most of the most of the 

sums are around the middle.sums are around the middle.

Picking at random a sum from Picking at random a sum from S(A)S(A) is equivalent to picking is equivalent to picking 

a random subset a random subset II of of AA and then computing its sum.and then computing its sum.

Let                   and                     . Let Let                   and                     . Let X=X=s(Is(I).). We have We have 1{ ,..., }kA a a= 1i iX a I= ⇔ ∈
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Distinct sumsDistinct sums
Var(XVar(X):):

By ChebysevBy Chebysev’’s inequalitys inequality

Thus at least Thus at least ¾¾ of the sums are inside an interval of lengthof the sums are inside an interval of length

Therefore Therefore 
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Threshold for CliqueThreshold for Clique
Theorem: Let Theorem: Let GGn,pn,p a graph and a graph and KK the number of cliques with the number of cliques with 44 vertices.vertices.

�� If If p=op=o((nn--2/32/3) then  ) then  

�� If If p=p=ωω((nn--2/32/3) then) then

Proof: Let              be the enumeration of the     Proof: Let              be the enumeration of the     44--tuplestuples, and , and XXii =1 =1 
when when CCii induces a induces a 44--cliqueclique and and XXii=0=0 otherwise.otherwise.

�� In the first case               , so                            In the first case               , so                            and  and  

�� Unfortunately in the second case we getUnfortunately in the second case we get

ChebysevChebysev’’s inequality proves useful. After bounding s inequality proves useful. After bounding VarVar[[KK] we can use ] we can use 
the fact:the fact:
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Threshold for CliqueThreshold for Clique
To compute To compute Var[KVar[K]=E[K]=E[K22]]--E[K]E[K]22

�� E[K]E[K]22::

�� E[KE[K22]]::

1.1. If                      then                                 .  If                      then                                 .  

2.2. If                      then                                    If                      then                                    . We count               . We count               
such instances.                                such instances.                                

3.3. If                       then                                   If                       then                                   . We count             . We count             
such instances.such instances.

ThusThus

Finally:Finally:
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DerandomizingDerandomizing
FF boolean formula in boolean formula in CNFCNF with variables with variables xx11,,……,x,xnn..

Set Set xxii==TrueTrue or or FalseFalse equiprobably and let equiprobably and let XX denote the number of denote the number of 
unsatisfied clauses.unsatisfied clauses.

Suppose that Suppose that E[X]E[X]<<11 (e.g. (e.g. kk--SatSat instance with less than instance with less than 22kk clauses), so clauses), so 
there is a truth assignment that satisfies the formulathere is a truth assignment that satisfies the formula

DerandomizeDerandomize..:..:
�� Set Set xx11 ==TrueTrue simplify simplify FF and compute and compute E[X| xE[X| x11=True].=True].
�� Set Set xx11 ==FalseFalse simplify simplify FF and compute and compute E[X| xE[X| x11=False].=False].

It is It is E[X| xE[X| x11=True]<1=True]<1 or or E[X| xE[X| x11=False]<1=False]<1. . 

Keep a value of Keep a value of xx11 that keeps that keeps E[X| xE[X| x11]<1.]<1.

Repeat for all variables and you get Repeat for all variables and you get E[X| xE[X| x11,,……, x, xnn]<1.]<1.

The values for The values for xx11,,……, x, xnn is the satisfying truth assignmentis the satisfying truth assignment



Conditional ProbabilitiesConditional Probabilities

Generalizing the previous technique we get the Generalizing the previous technique we get the ““method of method of 
conditional probabilitiesconditional probabilities””..

In general it is something like this:In general it is something like this:

�� X is a random variable determined by a sequence of random trialsX is a random variable determined by a sequence of random trials
TT11,,……,,TTnn..

�� We want to find a set of outcomes such that We want to find a set of outcomes such that 

�� There must be a                                   . We find it.There must be a                                   . We find it.

�� We repeat to find the outcome We repeat to find the outcome 

�� At the end we get                                            . BAt the end we get                                            . But there is no ut there is no 
randomness left thus we have determined a desired set of randomness left thus we have determined a desired set of 
outcomes for which               outcomes for which               

In order to In order to succedsucced we needwe need

1.1. ““SmallSmall”” number of trialsnumber of trials

2.2. The computations for determining The computations for determining ttii can be carried out efficientlycan be carried out efficiently
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MaxMax--cutcut
Theorem: For any undirected graph Theorem: For any undirected graph G(V,E)G(V,E) with with nn vertices and vertices and mm

edges there is a partition of the vertex set into two sets edges there is a partition of the vertex set into two sets A, B A, B such such 
thatthat

Let C(A,B) denote the number of edges between A, B. We have     Let C(A,B) denote the number of edges between A, B. We have     

when vertices equiprobably go either to when vertices equiprobably go either to A or B.A or B.

�� To begin with: vTo begin with: v11 goes to goes to AA (or (or BB) and we get ) and we get 

�� For the intermediate steps when the k first nodes are in some seFor the intermediate steps when the k first nodes are in some set t 
thenthen
�� We can compute the cut that these vertices We can compute the cut that these vertices ““givegive”” in the final cutin the final cut

�� Each of the edges that are Each of the edges that are ““incompleteincomplete”” have have ½½ probability to be in probability to be in 
the cutthe cut

�� So                                      and                     So                                      and                     can be can be 
computed efficiently. We keep the big one.computed efficiently. We keep the big one.

WeWe’’ll do ll do nn steps to fully determine steps to fully determine AA, , BB. Each step needs polynomial . Each step needs polynomial 
timetime
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The Lovasz Local LemmaThe Lovasz Local Lemma

Let Let AA11,,……,A,Ann be some be some ““badbad”” events and for all events and for all ii::

If If AAii are are pairwisepairwise independent then we could assert that none of these independent then we could assert that none of these 
will happen with probabilitywill happen with probability

The  Lovasz Local Lemma states that if each event is dependent tThe  Lovasz Local Lemma states that if each event is dependent to o ““fewfew””
other events then there is a probability that none of this will other events then there is a probability that none of this will happen. happen. 

Definition: Dependency graph of events Definition: Dependency graph of events AA11,,……,A,Ann is a digraph G in which is a digraph G in which 
�� For every For every AAii there is a vertex corresponding to itthere is a vertex corresponding to it

�� AAii is independent to all other is independent to all other AAjj’’ss such that such that ((AAii,A,Ajj)) is not an edge of is not an edge of GG

Theorem: Let Theorem: Let G(V,E)G(V,E) be a dependency graph of the events be a dependency graph of the events AA11,,……,A,Ann. Then. Then
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Lovasz Local Lemma ProofLovasz Local Lemma Proof
Let                . By induction on Let                . By induction on k=|S|k=|S| we will show that for any S and             we will show that for any S and             

: : 

For For k=0k=0 the result follows fromthe result follows from

For the inductive step we want to compute                       For the inductive step we want to compute                       . Separate . Separate SS
to                               and                  .to                               and                  .

By definition:By definition:

Numerator:Numerator:

Denominator:Denominator:

To complete the proof:To complete the proof:
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Other forms of LLLOther forms of LLL
�� The basic formThe basic form: If: If

1.1.

2.2. For allFor all ii:: AAi  i  is mutually independent of all but at most is mutually independent of all but at most dd of the other events of the other events 

3.3. ( or                       ) ( or                       ) 

Then with positive probability none of the events will occurThen with positive probability none of the events will occur

�� The Asymmetric formThe Asymmetric form: If for all: If for all ii::
1.1. AAii is mutually independent of                        for some is mutually independent of                        for some DDii

2.2.

3.3.

Then with positive probability none of the events will occurThen with positive probability none of the events will occur

�� The weighted formThe weighted form: If: If
1.1. AAii is mutually independent of                            for some is mutually independent of                            for some DDii

2.2. There are                 and                             such tThere are                 and                             such that for all hat for all ii::

��

��

Then with positive probability none of the events will occurThen with positive probability none of the events will occur
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Some ProofsSome Proofs

�� The general (compact!) formThe general (compact!) form

�� For the Weighted LLL set For the Weighted LLL set 

�� For the Asymmetric LLL set                             For the Asymmetric LLL set                             

This way:This way:

�� For the Basic LLL we can assume* d>1 and then                   For the Basic LLL we can assume* d>1 and then                   
andand
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Ramsey numbersRamsey numbers

Using the basic form of the Lovasz Local Lemma we will get a lowUsing the basic form of the Lovasz Local Lemma we will get a lower er 
bound for bound for R(k,kR(k,k). ). 

Theorem: Theorem: 
( 1)

2( , ) 2 (1 (1))
kk

R k k n O
e

+

> ≈ +

Definition: Definition: R(k,lR(k,l)) is the minimal n such that if the edges of the is the minimal n such that if the edges of the 
complete graph on complete graph on nn vertices, vertices, KKnn, are colored , are colored RedRed or or BlueBlue, then , then 
there is (as a subgraph) a there is (as a subgraph) a KKkk with all edges with all edges RedRed or a or a KKll with all with all 
edges edges BlueBlue..

For example R(3,3)>5. In particular R(3,3)=6  For example R(3,3)>5. In particular R(3,3)=6  



Ramsey numbersRamsey numbers

Proof: Color the edges of Proof: Color the edges of KKnn uniformly at random.uniformly at random.

For every                    let For every                    let AAss be the event that be the event that SS induces a induces a 
monochromaticmonochromatic kk--cliqueclique. It is. It is

Let G be a dependency graph of the events Let G be a dependency graph of the events AAss. The events . The events AAs  s  AAss’’ , are , are 
dependent only if dependent only if SS and and SS’’ share at least one edge. Thus share at least one edge. Thus 

By Lovasz Local Lemma if By Lovasz Local Lemma if 4pd<14pd<1 then there is positive probability that then there is positive probability that 
no monochromaticno monochromatic KKkk exists. exists. 

The maximal The maximal nn for which the above holds is our lower bound. for which the above holds is our lower bound. 
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Coloring HypergraphsColoring Hypergraphs

A A hypergraphhypergraph H=(V,E)H=(V,E) is a generalization of a graph where is a generalization of a graph where 

EE is           . is           . HH is: is: 

�� kk--uniformuniform if each edge contains exactly if each edge contains exactly kk vertices and vertices and 

�� KK--regularregular if every vertex participates in exactly if every vertex participates in exactly kk edges edges 

Let Let HH be a be a hypergraphhypergraph. Graph . Graph HH has has property Bproperty B if there if there 

exist a exist a 22--coloringcoloring of the of the verticesvertices such that none of the such that none of the 

edges is monochromatic edges is monochromatic 

Theorem: Let Theorem: Let H H be a be a kk--uniformuniform, , kk--regularregular hypergraphhypergraph. . 

Then for all Then for all k>8k>8, , HH has has property Bproperty B ..

2V
E⊆



Coloring HypergraphsColoring Hypergraphs

Proof: Color the vertices uniformly at random and let Proof: Color the vertices uniformly at random and let AAff be be 
the event that edge the event that edge ff is monochromatic.is monochromatic.

�� HH is is kk--uniformuniform. Thus for all . Thus for all f f ::

�� HH is is kk--regularregular, so each edge intersects with at most , so each edge intersects with at most 
k(kk(k--1)1) other edges and thus:other edges and thus:

Getting it all together:Getting it all together:

So using Lovasz Local Lemma: So using Lovasz Local Lemma: 
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EdgeEdge--disjoint Pathsdisjoint Paths

Assume we have a network and Assume we have a network and nn pairs of users who wish pairs of users who wish 
to communicate via to communicate via edgeedge--disjointdisjoint paths.paths.

Each pair of users, Each pair of users, ii, has a collection, has a collection FFii of of mm possible possible 
paths from which it chooses his path.paths from which it chooses his path.

If the possible paths do not share too many edges then If the possible paths do not share too many edges then 
there is a set of edgethere is a set of edge--disjoint paths that does the work.disjoint paths that does the work.

Theorem: If any path in Theorem: If any path in FFii shares edges with no more shares edges with no more 
than than kk paths in paths in FFjj (         ) and            then there are (         ) and            then there are nn
disjoint paths connecting the disjoint paths connecting the nn pairs  pairs  

8 1nk
m
≤j i∀ ≠



EdgeEdge--disjoint Pathsdisjoint Paths

Proof: Each pair chooses equiprobably one path from his Proof: Each pair chooses equiprobably one path from his mm
possible pathspossible paths

Let Let EEi,ji,j denote the event that the paths of denote the event that the paths of ii and and jj share a share a 

common edge. It iscommon edge. It is

Event Event EEi,ji,j could be depended only to events could be depended only to events EEi,ti,t or or EEj,tj,t. So . So 

d<2nd<2n..

It is                     . So using LLL we get: It is                     . So using LLL we get: 
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ExpandersExpanders

Definition: A graph Definition: A graph G(V,E)G(V,E) is called is called ββ--expanderexpander if if 

We will show that if we have a We will show that if we have a ββ--expanderexpander G(V,E)G(V,E), we , we 
can partition can partition EE to to EE11, , EE22, so that both , so that both GG11(V,E(V,E11)) and and 
GG22(V,E(V,E22)) are nearly a are nearly a ((ββ/2)/2)--expander.expander.

Theorem: Let Theorem: Let εε>0>0, , rrrr33 and and ββ sufficiently large in terms of sufficiently large in terms of 
εε, r, r. If . If GG is an is an rr--regular regular ββ--expanderexpander then there is a then there is a 
partition                    such that each partition                    such that each EEii induces a            induces a            

--expander. expander. 

Proof: We will (as usual) place each edge equiprobably to Proof: We will (as usual) place each edge equiprobably to 
one of the two sets. We will one of the two sets. We will ““definedefine”” what is what is ““badbad”” and and 
use the use the weightedweighted version of LLL.version of LLL.
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ExpandersExpanders

For each         (connected) of size             , let For each         (connected) of size             , let AAss be the event that be the event that SS
““failsfails””::

It is:It is:

It is like throwing It is like throwing ββ|S||S| coins and coins and |E|E11||rr|heads|=|E|heads|=|E’’11|, |E|, |E22||rr|tails|=|E|tails|=|E’’22||..

So:So:

Using Chernoff Bound: Using Chernoff Bound: 
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ExpandersExpanders
GG is is rr--regularregular. It is known. It is known…… that in this case every vertex lies in at that in this case every vertex lies in at 

most                           connected subsets of sizemost                           connected subsets of size t.t.

AAss is dependent to at most is dependent to at most other events other events AAss’’ for which for which |S|S’’|=t|=t

We haveWe have

��

��

as long as                          (for                   )as long as                          (for                   )

The weighted version of LLL does the workThe weighted version of LLL does the work
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