The Probabilistic Method

Topics on Randomized Computation Spring Semester
Co.Re.Lab.-N.T.U.A.

Overview

In the first part we will see simple methods (basically through examples)

1. The counting method
2. The first moment method
3. The deletion method
4. The second moment method
5. Derandomization with conditional probabilifies

The second part is THE part(y):

1. General Lovasz Local Lemma
2. Other (usual and helpful) forms of LLL
3. Constructive proof of LLL

Counting Expanders

We will relay on $\operatorname{Pr}(Q(x))>0 \Rightarrow \exists x Q(x)$
Definition: An (n, d, a, c) OR-concentrator is a bipartite multigraph $G(L, R, E)$ such that:

- Each vertex in L has degree at most d
- For any $S \subseteq L:|S| \leq a \cdot n \rightarrow|N(S)| \geq c|S|$

Theorem: There is an integer n_{0} such that for all $n>n_{0}$ there is an $(n, 18,1 / 3,2)$ OR-concentrator.

We will choose a random graph from a suitable probabilistic space and we will show that it has positive probability of being an ($n, 18,1 / 3,2$) OR-concentrator.

Counting Expanders

Proof: Our random bipartite graph will have

- Vertex set $V=L \cup R$
- Each $v \in L$ "chooses" d times a neighbor (in R) uniformly (multiple edges become one edge).

Let F_{S} be the event that a subset with s vertices of L has fewer than cs neighbors.

We will bound $\operatorname{Pr}\left[E_{s}\right]$ and then sum up for all the values $s \leq a n$ to get a bound on the probability of failure

Fix an $S \subseteq L$ of size s and a $T \subseteq R$ of size cs.

Counting Expanders

- There are $\binom{n}{s}$ ways of choosing S
- There are $\binom{n}{c s}$ ways of choosing T
- The probability that T contains all neighbors of S is $\leq\left(\frac{c s}{n}\right)^{d s}$

Thus $\operatorname{Pr}\left[E_{s}\right] \leq\binom{ n}{s}\binom{n}{c s}\left(\frac{c s}{n}\right)^{d s} \leq\left(\frac{n e}{s}\right)^{s}\left(\frac{n e}{c s}\right)^{c s}\left(\frac{c s}{n}\right)^{d s} \leq\left[\left(\frac{s}{n}\right)^{d-c-1} e^{c+1} c^{d-c}\right]^{s}$
Simplifying for $\mathrm{a}=1 / 3, \mathrm{C}=2, \mathrm{~d}=18$ and using $s \leq$ an we get $\operatorname{Pr}\left[E_{S}\right] \leq\left[\left(\frac{s}{n}\right)^{d-c-1} e^{c+1} c^{d-c}\right]^{s} \leq\left[\left(\frac{1}{3}\right)^{d-c-1} e^{c+1} c^{d-c}\right]^{s} \leq\left[\left(\frac{c}{3}\right)^{d}(3 e)^{c+1}\right]^{s} \leq\left[\left(\frac{2}{3}\right)^{18}(3 e)^{3}\right]^{s}$
Summing up we get $\operatorname{Pr}[$ failure $] \leq \sum_{S} \operatorname{Pr}\left[E_{S}\right]<1$

The First Moment Method

1. At first we design a "thought experiment" in which a random process plays a role
2. We analyze the random experiment and draw a conclusion using the first moment principle:

$$
E[X] \leq t \Rightarrow \operatorname{Pr}(X \leq t)>0
$$

Example 1

Theorem:

For any undirected graph $G(V, E)$ with n vertices and m edges there is a partition of the vertex set into two sets A, B such that

$$
\left\lvert\,\{\{u, v\} \in E \mid u \in \hat{A} \backslash v \in B\} \geq \frac{m}{2}\right.
$$

Proof:

- Assign each vertex independently and equiprobably in either A or B.
- Let $X_{\{u, v\}}=1$ when $\{u, v\}$ has endpoints in diffferent sets and $X_{\{u, v\}}=0$ otherwise: $\operatorname{Pr}\left[X_{\{u, v\}}=1\right]=1 / 2 \Rightarrow E\left[X_{\{u, v\}}\right]=1 / 2$
- By linearity of expectations:

$$
E[\mid \text { separated edges } \mid]=\sum_{\{u, v\} \in E} E\left[X_{\{u, v\}}\right]=m / 2
$$

Example 2

Theorem:

For any set of m clauses there is a truth assignment that satisfies at least $m / 2$ clauses. (a clause is $\left(x_{1} \vee \neg x_{2} \vee x_{3} \vee \ldots \vee x_{k}\right)$)

Proof:

- Independently set each variable TRUE or FALSE
- For each clause let $Z_{i}=1$ if the i-th clause is satisfied and $Z_{i}=0$ otherwise
- If the $i-$-th clause has k literals: $\operatorname{Pr}\left(Z_{i}=1\right)=1-2^{-1}$
- For every clause: $E\left[Z_{i}\right] \geq 1 / 2$
- The expected number of satisfied clauses is

$$
E\left[\sum_{i=1}^{m} Z_{i}\right]=\sum_{i=1}^{m} E\left[Z_{i}\right] \geq \frac{m}{2}
$$

Example 3

Theorem:

Any instance of k-Sat with $<2^{k}$ clauses is satisfiable

Proof:

- Independently set each variable TRUE or FALSE
- For each clause let $Z_{i}=0$ if the $j=$-th clause is satisfied and $Z_{i}=1$ otherwise: $\operatorname{Pr}\left(Z_{i}=1\right)=2^{-k}$
- For every clause: $E\left[Z_{i}\right]=2^{-k}$
- The expected number of unsatisfied clauses is

$$
E\left[\sum_{i=1}^{m} Z_{i}\right]=\sum_{i=1}^{m} E\left[Z_{i}\right]=m 2^{-k}<1
$$

The Deletion Method

("sample and modify" method)

We want to prove that a combinatorial object F exist

1. At first we show that there exist an F^{\prime} very "close" to F.
2. Then we change F^{\prime} to F and show that the probability of existence remains positive

Turan's Theorem*

Theorem: Let $G(V, E)$ be a graph. If $/ V /=n$ and $/ E /=n k / 2$ then $a(G) \geq n / 2 k$
Proof: Using probabilistic arguments we will prove the existence of a subset that has many more vertices than edges
Deleting vertices corresponding to these edges we get an independent set.

Let S be a subset of V containing each vertex with probability p (to be fixed later). We have $E[/ S /]=n p$

Let G^{\prime} be the subgraph induced by S.
For every $e \in E$ define $Y_{e}=1$ if $e \in E\left(G^{\prime}\right)$ and $Y_{e}=0$ otherwise. Then:

$$
E\left[Y_{e}\right]=p^{2}
$$

Turan's Theorem*

Let $Y=/ E(G) /$ the number of edges in the induced subgraph. Then:

$$
E[Y]=E\left[\sum_{c \in E} Y_{c}\right]=\sum_{c \in E} E\left[Y_{c}\right]=\frac{n k}{2} p^{2}
$$

Deletion time: We drop all edges (by deleting vertices) from G^{\prime} and we get an independent set S^{*}. We have:

$$
E\left[\left|S^{*}\right|\right] \geq E[|S|-Y]=E[|S|]-E[Y]=n p-\frac{n k}{2} p^{2}
$$

We fix p to maximize this expression. It's a parabola, which attains its maximum at $p=1 / k$ and so

$$
E\left[\mid S^{*} \|\right] \geq \frac{n}{2 k}
$$

Erdos's Theorem

Definitions:

1. The chromatic number, $X(G)$, of a graph G is the minimum number of colors needed to color the vertices of G such that adjacent vertices have different colors.
2. By $a(G)$ we denote the cardinality of a maximum independent set of
3. The girth, $g(G)$, of a graph G is the length of a shortest cycle in G

Theorem: For any naturals $k_{s} /$ there exist a graph G such that: $x(G) \geq k$ and $g(G) \geq l$.

We will find a graph that has

- Small a(G)
- Not many "bad" cycles of length </ (that will be destroyed!)

In the end we'll use that $|V(G)| \leq x(G) a(G)$ and "force" $x(G)$ to get big

Erdos's Theorem

Proof: We choose a random graph $G_{n p}$ (n vertices and each edge chosen independently with probability p).

- Small p gives large independent sets and thus small chromatic number
- Large p gives small cycles.

Let $p=n^{\theta-1}$ and we'll fix θ later
Let $\left(b_{1 v}, \ldots, b_{c}\right)$ an ordered sequence of vertices. The probability of $b_{1}-b_{2}-\ldots$ -$b_{C}-b_{1}$ being a cycle is p^{c}. Let $Y_{B}=1$ when this happens and $Y_{B}=0$ otherwise

For a subset $B^{\prime}=\left\{b_{1, \ldots}, b_{c}\right\}$ of V there are $c!$ ways to form cyclic ordered sequences with the vertices of B^{\prime}. There are $\binom{n}{c}$ ways of choosing B.
Let X_{c} be the number of cycles of length c in G_{c} Combining we get:

$$
E\left[X_{c}\right]=E\left[\frac{1}{2 c} \sum_{B \subseteq \mathbb{V}]^{c}} Y_{B}\right]=\left(\begin{array}{l}
n \\
c
\end{array} \frac{(c-1)!}{2} p^{c}\right.
$$

Erdos's Theorem

Let X be the number of cycles of length no greater than $:$:
$E[X]=E\left[\sum_{c=3}^{l} X_{c}\right]=\sum_{i=3}^{l}\binom{n}{i} \frac{(i-1)!}{2} p^{i}=\sum_{i=3}^{l} \frac{n!}{(n-i)!2 i} p^{i} \leq \sum_{i=3}^{l} n^{i} \frac{1}{2 i}\left(n^{\theta-1}\right)^{i} \leq \sum_{i=3}^{l} \frac{n^{\theta^{i}}}{2 i}$
By Markov's inequality: $\operatorname{Pr}(X \geq n / 2) \leq \frac{E[X]}{n / 2} \leq \frac{2}{n} \sum_{i=3}^{1} \frac{n^{a i}}{2 i}=\sum_{i=3}^{1} \frac{n^{i-1}}{i}<(l-2) n^{n l-1}$
Fixing $\theta<1 / /$ we get: $\operatorname{Pr}_{n \rightarrow \infty}(X \geq n / 2)=0$
Let Y be the number of independent sets of size y (to be fixed later) in G. By Markov's inequality:

$$
\operatorname{Pr}(a(G) \geq y)=\operatorname{Pr}(Y \geq 1) \leq E[Y]=\binom{n}{y}(1-p)^{v(y-1) / 2}<n^{y}\left(e^{-p}\right)^{v(y-1) / 2}
$$

Now let $y=\frac{3}{p} \ln n$. We get: $\operatorname{Pr}(a(G) \geq y) \leq\left(n e^{-p(y-1) / 2}\right)^{y} \leq\left(n e^{\frac{-3 n n}{2}+\frac{p}{2}}\right)^{y}=\left(\frac{1}{\sqrt{n}} e^{\frac{p}{2}}\right)^{y}$
So $\operatorname{Pr}_{n \rightarrow \infty}(a(G) \geq y)=0$

Erdos's Theorem

By taking n large enough we manage both events

- $a(G) \geq y$ and
- $X \geq n / 2$,
to have probability $<1 / 2$.
So there is a G such that: $a(G)<y$ and $X<n / 2$
Deletion time: We remove one vertex from each of the at most $n / 2$
"bad" cycles. Thus we get a G^{\prime} with $g(G) \geq l$, more than $n / 2$ vertices and $a\left(G^{\prime}\right) \leq a(G)$

Putting it all together: $x\left(G^{\prime}\right) \geq \frac{\left|V\left(G^{\prime}\right)\right|}{a\left(G^{\prime}\right)} \geq \frac{|V(G)| / 2}{a(G)} \geq \frac{n / 2}{\frac{3}{p} \ln n}=\frac{n^{\theta}}{6 \ln n} \geq k$ for large
enough n .
G'is our Graph.

The Second Moment Method

- Method based on Chebysev's inequality:

$$
\operatorname{Pr}(\mid X-E[X] \geq t) \leq \frac{\operatorname{var}[X]}{t^{2}}
$$

reaching conclusions using concentration results

- Useful tool for determining the threshold function of an event A :
- Below threshold, Pr(A) tends to 0
- Above it, Pr (A) tends to 1

Distinct sums

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$. Define $S(I)=\{s(I): I \subseteq A\}$, where $s(I)$ is the sum of the elements of $I_{\text {. }}$
Question: How large can a subset of $\{1, \ldots, n\}$ with distinct sums be?

One of size $k=\lfloor\log n\rfloor+1$ is $A=\left\{2^{i-1} \mid i=1, \ldots, k\right\}$.
On the other hand every sum is at most $k n$ and so

$$
2^{k} \leq k n \Rightarrow k \leq \log n+\log \log n+O(1)
$$

Theorem: if $A \subset\{1, \ldots, n\}$ has distinct sums then

$$
|A| \leq \log n+\frac{1}{2} \log \log n+O(1)
$$

Distinct sums

Proof: To get an A "close" to the upper bound we need

- S(A) "close" to $\{1, \ldots, k n\}$
- The sums of the subsets of A to be spread evenly.

Using Chebysev's inequality we'|, prove that most of the sums are around the middle.

Picking at random a sum from $S(A)$ is equivalent to picking a random subset I of A and then computing its sum.

Let $A=\left\{a_{1}, \ldots, a_{k}\right\}$ and $X_{i}=1 \Leftrightarrow a_{i} \in I$. Let $X=S(I)$. We have

$$
E[X]=\sum_{i=1}^{k} a_{i} E\left[X_{i}\right]=\frac{1}{2} \sum_{i=1}^{k} a_{i}
$$

DISHACHESUANS

$\operatorname{Var}(\mathrm{X}): E\left[X^{2}\right]=E\left[\left(\sum_{i=1}^{k} a_{i} X_{i}\right)^{2}\right]=E\left[\left(\sum_{i=1}^{k} a_{i}^{2} X_{i}^{2}+2 \sum_{1 \leq i<j \leq k} a_{i} a_{j} X_{i} X_{j}\right]=\right.$

$$
\begin{aligned}
& \sum_{i=1}^{k} a_{i}^{2} E\left[X_{i}^{2}\right]+2 \sum_{1 \leq i<j \leq k} a_{i} a_{j} E\left[X_{i} X_{j}\right]=\frac{1}{2} \sum_{i=1}^{k} a_{i}^{2}+\frac{1}{2} \sum_{1 \leq i<j \leq k} a_{i} a_{j} \\
& E[X]^{2}=\frac{1}{4} \sum_{i=1}^{k} a_{i}^{2}+\frac{1}{2} \sum_{1 \leq i<j \leq k} a_{i} a_{j}
\end{aligned}
$$

By Chebysev's inequality

$$
\Rightarrow \operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=\frac{1}{4} \sum_{i=1}^{t} a_{i}^{2}<\frac{n^{2} k}{4}
$$

$$
\operatorname{Pr}(|X-E[X]| \geq 2 \sqrt{\operatorname{var}[X]}) \leq \frac{\operatorname{var}[X]}{(2 \sqrt{\operatorname{var}[X]})^{2}} \Rightarrow \operatorname{Pr}(|X-E[X]| \geq n \sqrt{k}) \leq \frac{1}{4}
$$

Thus at least $3 / 4$ of the sums are inside an interval of length $2 n \sqrt{k}$
Therefore

$$
\frac{3}{4} 2^{k} \leq 2 n \sqrt{k} \Rightarrow k \leq \log n+\frac{1}{2} \log \log n+O(1)
$$

Threshold for Clique

Theorem: Let $G_{n, p}$ a graph and K the number of cliques with 4 vertices.

- If $p=\alpha\left(n^{-2 / 3}\right)$ then $\operatorname{Pr}(K \geq 1)=0$
- If $p=\omega\left(n^{-2 / 3}\right)$ then $\operatorname{Pr}_{n \rightarrow \infty}^{n \rightarrow \infty}(K \geq 1)=1$ when C_{i} induces a 4 -cligue and $X_{j}=0$ otherwise.
- In the first case $K=\sum_{i=1}^{1} X_{i}$, so $E[K]=\binom{n}{4} p^{6} \approx \frac{n^{4} p^{6}}{24}$ and

$$
\operatorname{Pr}_{n \rightarrow \infty}(K \geq 1) \leq{ }_{n \rightarrow \infty}^{E}[K] \approx \lim _{n \rightarrow \infty} \frac{n^{4} p^{6}}{24} \stackrel{\left.()^{4}\right) o\left(n^{-2 / 3}\right)}{=} 0
$$

- Unfortunately in the second case we get

$$
\operatorname{Pr}_{n \rightarrow \infty}(K \geq 1) \leq \underset{n \rightarrow \infty}{E}[K] \approx \lim _{n \rightarrow \infty} \frac{n^{4} p^{6}}{24} \stackrel{p=\omega\left(n^{-2 / 3}\right)}{=} \infty
$$

Chebysev's inequality proves useful. After bounding Var[K] we can use the fact:

$$
\operatorname{Pr}(K=0) \leq \operatorname{Pr}(\mid K-E[K] \geq E[K]) \leq \frac{\operatorname{Var}[K]}{(E[K])^{2}}
$$

Threshold for Clique

To compute Var $[K]=E[K 2]-E[K]$

- E[KF: $E[K]^{2}=\left(\sum_{i=1}^{i} E\left[X_{i}\right]\right)^{2}=\sum_{i=1}^{i} E\left[X_{i}\right]^{2}+\sum_{i=j} E\left[X_{i}\right] E\left[X_{j}\right]$
- E[K2]: $E\left[K^{2}\right]=E\left[\left(\sum_{i=1}^{i} X_{i}\right)^{2}\right]=\sum_{i=1}^{i} E\left[\bar{X}_{i}{ }^{2}\right]+\sum_{i=j} E\left[X_{i} X_{j}\right]$

1. If $\left|C_{i} \cap C_{j}\right| \leq 1$ then $E\left[X_{i} X_{j}\right]=E\left[X_{i}\right] E\left[X_{j}\right]$
2. If $\left|C_{i} \cap C_{j}\right|=2$ then $E\left[X_{i} X_{j}\right]=p \cdot p^{5} \cdot p^{5}=p^{11}$. We count $\left(\begin{array}{l}n \\ 4 \\ \text { such instances. }\end{array}\right)\binom{4}{2}\binom{n-4}{2}$
3. If $\left|C_{i} \cap C_{j}\right|=3$
such instances. then $E\left[X_{i} X_{j}\right]=p^{3} \cdot p^{3} \cdot p^{3}=p^{9}$. We count $\binom{n}{4}\binom{4}{3}\binom{n-4}{1}$

Thus

$$
\operatorname{Var}[K]=\sum_{i=1}^{1} E\left[X_{i}^{2}\right]-\sum_{i=1}^{1} E\left[X_{i}\right]^{2}+\sum_{i \neq j} E\left[X_{i} X_{j}\right]-\sum_{i \neq j} E\left[X_{i}\right] E\left[X_{j}\right] \Rightarrow
$$

$\operatorname{Var}[K] \leq\binom{ n}{4} p^{6}+\binom{n}{4}\binom{4}{2}\binom{n-4}{2} p^{11}+\binom{n}{4}\binom{4}{3}\binom{n-4}{1} p^{9} \stackrel{p=\omega(n-2 / 3)}{=} o\left(n^{8} p^{12}\right)=o\left(E[X]^{2}\right)$
Finally:

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}(K=0) \leq \lim _{n \rightarrow \infty} \frac{\operatorname{Var}[K]}{(E[K])^{2}}=0
$$

Derandomizing

F boolean formula in $C N F$ with variables x_{1}, \ldots, X_{n}.
Set $x=$ True or False equiprobably and let X denote the number of unsatisfied clauses.
Suppose that $E[X]<1$ (e.g. k-Sat instance with less than 2^{k} clauses), so there is a truth assignment that satisfies the formula

Derandomize..:

- Set $x_{1}=$ True simplify F and compute $E[X] x_{1}=$ True].
- Set $x_{1}=F$ alse simplify F and compute $E[X] X_{1}=F$ False $]$.

It is $E\left[X \mid x_{1}=\right.$ True $/<1$ or $E\left[X \mid x_{l}=\right.$ Fa/sel $/<1$. Keep a value of x_{1} that keeps $E\left[X / x_{1}\right]<1$.

Repeat for all variables and you get $E\left[X \mid x_{1}, \cdots, x_{n}\right]<1$.
The values for x_{1}, \ldots, x_{n} is the satisfying truth assignment

Conditional Probabilities

Generalizing the previous technique we get the "method of conditional probabilities".
In general it is something like this:

- X is a random variable determined by a sequence of random trials $T_{1 / j} \cdots T_{n}$.
- We want to find a set of outcomes such that $X \leq E[X]$
- There must be a $t_{1}: E\left[X \mid T_{1}=t_{1}\right] \leq E[X]$. We find it.
- We repeat to find the outcome

$$
t_{i}: E\left[X \mid T_{1}=t_{1}, \ldots, T_{i-1}=t_{i-1}, T_{i}=t_{i}\right] \leq E\left[X \mid T_{1}=t_{1}, \ldots, T_{i-1}=t_{i-1}\right] \leq E[X]
$$

- At the end we get $E\left[X \mid T_{1}=t_{1}, \ldots, T_{n}=t_{n}\right] \leq E[X]$. But there is no randomness left thus we have determined a desired set of outcomes for which $X \leq E[X]$

In order to succed we need

1. "Small" number of trials
2. The computations for determining t_{i} can be carried out efficiently

Max-cut

Theorem: For any undirected graph $G(V, E)$ with n vertices and m edges there is a partition of the vertex set into two sets A, B such that

$$
|\{\{u, v\} \in E \mid u \in A \wedge v \in B\}| \geq \frac{m}{2}
$$

Let $C(A, B)$ denote the number of edges between A, B. We have $E[C(A, B)] \geq \frac{m}{2}$ when vertices equiprobably go either to A or B .

- To begin with: v_{1} goes to A (or $\left.B\right)$ and we get $E\left[C(A, B) \mid v_{1}\right] \geq E[C(A, B)]$
- For the intermediate steps when the k first nodes are in some set then
- We can compute the cut that these vertices "give" in the final cut
- Each of the edges that are "incomplete" have $1 / 2$ probability to be in the cut
- So $E\left[C(A, B) \mid v_{1}, \ldots, v_{k}, v_{k+1} \in A\right]$ and $E\left[C(A, B) \mid v_{1}, \ldots, v_{k}, v_{k+1} \in B\right]$ can be computed efficiently. We keep the big one.

We'Il do n steps to fully determine A, B. Each step needs polynomial time

The Lovasz Local Lemma

Let $A_{1 y, \ldots, A_{n}}$ be some "bad" events and for all $\dot{i} . \operatorname{Pr}\left(A_{i}\right)<1 / 2$
If A_{j} are pairwise independent then we could assert that none of these will happen with probability

The Lovasz Local Lemma states that if each event is dependent to "few" other events then there is a probability that none of this will happen.

Definition: Dependency graph of events A_{y}, \ldots, A_{n} is a digraph G in which

- For every A_{j} there is a vertex corresponding to it
- A_{j} is independent to all other A_{j}^{\prime} 's such that $\left(A_{j} A_{j}\right)$ is not an edge of G

Theorem: Let $G(V, E)$ be a dependency graph of the events $A_{y^{\prime}}$.

$$
\left[\forall i \exists x_{i}: \operatorname{Pr}\left(A_{i}\right) \leq x_{i} \prod_{(i, j) \in E}\left(1-x_{j}\right)\right] \Rightarrow \operatorname{Pr}\left(\bigcap_{i=1}^{n} \overline{A_{i}}\right) \geq \prod_{i=1}^{n}\left(1-x_{i}\right)
$$

Lovasz Local Lemma Proof

Let $S \subseteq\{1, \ldots, n\}$. By induction on $k=/ S /$ we will show that for any S and $i \notin S: \operatorname{Pr}\left(A_{i} \mid \bigcap_{j \in S} \overline{A_{j}}\right) \leq x_{i}$
For $k=0$ the result follows from $\forall i \exists x_{i}: \operatorname{Pr}\left(A_{i}\right) \leq x_{i} \prod_{(i, j) \in E}\left(1-x_{j}\right)$
For the inductive step we want to compute $\operatorname{Pr}\left(A_{i} \mid \bigcap_{j \in s} \overline{A_{j}}\right) \leq x_{i}$. Separate S to $S_{1}=\{j \in S:(i, j) \in E\}$ and $S_{2}=S \backslash S_{1}$.
By definition: $\quad \operatorname{Pr}\left(A_{i}, \bigcap_{j \in S} \overline{A_{j}}\right)=\frac{\operatorname{Pr}\left(A_{i} \cap \bigcap_{j \in S} \overline{A_{i}} \cap \bigcap_{j \in S_{2}} \overline{A_{j}}\right)}{\operatorname{Pr}\left(\bigcap_{j \in S_{1}} \overline{A_{j}} \cap \bigcap_{j \in S_{2}} \overline{A_{j}}\right)}$
Numerator: $\operatorname{Pr}\left(A_{i} \cap \bigcap_{j \in S_{1}} \bar{A}_{j} \bigcap_{j \in S_{2}} \overline{A_{j}}\right) \leq \operatorname{Pr}\left(A_{i} \mid \bigcap_{j \in S_{2}} \overline{A_{j}}\right)=\operatorname{Pr}\left(A_{i}\right) \leq x_{i} \prod_{(, i j) \in E}\left(1-x_{j}\right)$
Denominator: $\operatorname{Pr}\left(\bigcap_{j \in S_{1}} \bar{A}_{j} \bigcap_{j \in S_{2}} \bar{A}_{j}\right) \geq \prod_{j \in \epsilon_{1}}\left(1-x_{j}\right) \geq \prod_{(i j) \in E}\left(1-x_{j}\right)$
To complete the proof:

$$
\operatorname{Pr}\left(\bigcap_{i=1}^{n} \overline{A_{i}}\right)=\left(1-\operatorname{Pr}\left(A_{1}\right)\right)\left(1-\operatorname{Pr}\left(A_{2} \mid \overline{A_{1}}\right)\right) \ldots\left(1-\operatorname{Pr}\left(A_{n} \mid \bigcap_{i=1}^{n-1} \overline{A_{i}}\right)\right) \geq \prod_{i=1}^{n}\left(1-x_{i}\right)
$$

Other forms of LLL

- The basic form: If

1. $\quad \forall i: \operatorname{Pr}\left(A_{i}\right) \leq p<1$
2. For all \dot{A} i A, is mutually independent of all but at most d of the other events
3. $\quad 4 p d<1$ (or ep $(d+1)<1$)

Then with positive probability none of the events will occur

- The Asymmetric form: If for all \dot{A}
${ }_{1 .} \quad A_{i}$ is mutually independent of $A \backslash\left(D_{i} \cup A_{i}\right)$ for some D_{i}

2. $\quad \operatorname{Pr}\left(A_{i}\right) \leq 1 / 8$
3. $\quad \sum_{A_{j} \in D_{i}} \operatorname{Pr}\left(A_{i}\right) \leq 1 / 4$

Then with positive probability none of the events will occur

- The weighted form: If

1. A_{i} is mutually independent of $A \backslash\left(D_{i} \cup A_{i}\right)$ for some D_{i}
2. There are t_{1}, \ldots, t_{n} and $p: 0 \leq p<1 / 8$ such that for all \dot{r}.

$$
\operatorname{Pr}\left(A_{i}\right) \leq p^{t_{i}}
$$

$\sum_{A_{j} \in D_{i}}(2 p)^{t_{j}} \leq t_{i} / 4$
Then with positive probability none of the events will occur

Some Proofs

- The general (compact!) form
- For the Weighted LLL set $x_{i}=(2 p)^{i^{p<\frac{1}{5}}} \Rightarrow x_{i}<(1 / 4)^{n} \Rightarrow\left(1-x_{i}\right) \geq e^{-12 x_{i}}$

$$
x_{i} \prod_{\Lambda_{1}, D_{i}}\left(1-x_{j}\right) \geq x_{i} \prod_{A_{i}, D_{i}} e^{-12 x_{j}} \geq 2^{4} \operatorname{Pr}\left(A_{i}\right) \cdot e^{-12 \sum_{A_{j}}\left(2 D^{4}\right.} \geq 2^{4} \operatorname{Pr}\left(A_{i}\right) \cdot e^{06}>\operatorname{Pr}\left(A_{i}\right)
$$

- For the Asymmetric LLL set $x_{i}=2 \operatorname{Pr}\left(A_{i}\right) \Rightarrow x_{i} \leq 1 / 4 \Rightarrow\left(1-x_{i}\right) \geq e^{-1.2 x_{i}}$ This way:

$$
x_{i} \prod_{A_{j} \in D_{i}}\left(1-x_{j}\right) \geq x_{i} \prod_{A_{j} \in D_{i}} e^{-1.2 x_{j}} \geq 2 \operatorname{Pr}\left(A_{i}\right) \cdot e^{-12 \sum_{A_{, j,}, D^{2 P r}\left(A_{i}\right)}} \geq 2 \operatorname{Pr}\left(A_{i}\right) \cdot e^{0.6}>\operatorname{Pr}\left(A_{i}\right)
$$

- For the Basic LLL we can assume* $d>1$ and then $\operatorname{Pr}\left(A_{i}\right) \leq 1 / 8$ and $\quad \sum_{A_{1}, \in D_{i}} \operatorname{Pr}\left(A_{i}\right) \leq p d=(1 / 4) 4 p d<1 / 4$

Ramsey numbers

Definition: $R(k, l)$ is the minimal n such that if the edges of the complete graph on n vertices, K_{n} are colored Red or Blue, then there is (as a subgraph) a K_{k} with all edges Red or a K, with all edges Blue.

For example $R(3,3)>5$. In particular $R(3,3)=6$

Using the basic form of the Lovasz Local Lemma we will get a lower bound for $R(k, k)$.

Theorem:

$$
R(k, k)>n \approx \frac{k}{e} 2^{(k+1) / 2}(1+O(1))
$$

Ramsey numbers

Proof: Color the edges of K_{n} uniformly at random.
For every $S \subset V,|S|=k$ let A_{s} be the event that S induces a monochromatic k-clique. It is

$$
\operatorname{Pr}\left(A_{S}\right)=\left(\frac{1}{2}\right)^{k} \stackrel{(k}{2} \begin{aligned}
& -1 \\
& =
\end{aligned} p
$$

Let G be a dependency graph of the events $A_{s^{\prime}}$ The events $A_{s} A_{s^{\prime}}$, are dependent only if S and $S^{\prime \prime}$ share at least one edge. Thus

$$
d=\Delta(G) \leq\binom{ k}{2}\binom{n-2}{k-2}
$$

By Lovasz Local Lemma if $4 p d<1$ then there is positive probability that no monochromatic K_{k} exists.

The maximal n for which the above holds is our lower bound.

Coloring Hypergraphs

A hypergraph $H=(V, E)$ is a generalization of a graph where E is $E \subseteq 2^{V}$. His:

- k-uniform if each edge contains exactly k vertices and
- K-regular if every vertex participates in exactly k edges

Let H be a hypergraph. Graph/H has property B if there exist a 2 -coloring of the vertices such that none of the edges is monochromatic

Theorem: Let H be a k-uniform, k-regular hypergraph. Then for all $k>8, H$ has property B.

Coloring Hypergraphs

Proof: Color the vertices uniformly at random and let A_{f} be the event that edge f is monochromatic.

- H is k-uniform. Thus for all $f: \operatorname{Pr}\left(A_{f}\right)=(1 / 2)^{k-1}=p$
- H is k-regular, so each edge intersects with at most $k(k-1)$ other edges and thus: $d \leq k(k+1)$

Getting it all together:

$$
\forall k>8: e p(d+1) \leq e(1 / 2)^{k-1}(k(k+1)+1)<1
$$

So using Lovasz Local Lemma:

$$
\operatorname{Pr}\left(\bigcap_{f} \overline{A_{f}}\right)>0
$$

Edge-disjoint Paths

Assume we have a network and n pairs of users who wish to communicate via edge-di/sjoint paths.

Each pair of users, i, has a collection $F_{\text {, }}$ of m possible paths from which it chooses his path.

If the possible paths do not share too many edges then there is a set of edge-disjoint paths that does the work.

Theorem: If any path in $F_{\text {I }}$ shares edges with no more than k paths in $F_{j}(\forall j \neq i)$ and $8 n k / m \leq 1$ then there are n disjoint paths connecting the n pairs

Edge-disjoint Paths

Proof: Each pair chooses equiprobably one path from his m possible paths

Let $E_{i, j}$ denote the event that the paths of i and j share a common edge. It is

$$
p=\operatorname{Pr}\left(E_{i, j}\right) \leq k / m
$$

Event $E_{i, j}$ could be depended only to events $E_{i, t}$ or $E_{j, t}$ So $d<2 n$.

It is $4 d p<\frac{8 n k}{m}<1$. So using LLL we get: $\operatorname{Pr}\left(\bigcap_{i \neq j} \overline{E_{i, j}}\right)>0$

Expanders

Definition: A graph $G(V, E)$ is called β-expander if

$$
\forall S \subset V\left[|S| \leq \frac{1}{2}|V| \mapsto E(S, \bar{S}) \geq \beta|S|\right]
$$

We will show that if we have a β-expander $G(V, E)$, we can partition E to $E_{1 I} E_{2}$ so that both $G_{1}\left(V, E_{1}\right)$ and $G_{2}\left(V, E_{2}\right)$ are nearly a ($\beta / 2$)-expander.

Theorem: Let $\varepsilon>0, r \geqslant 3$ and β sufficiently large in terms of ε, r. If G is an r-regular β-expander then there is a partition $E(G)=E_{1} \cup E_{2}$ such that each E_{i} induces a $\beta\left(\frac{1}{2}-\varepsilon\right)$-expander.

Proof: We will (as usual) place each edge equiprobably to one of the two sets. We will "define" what is "bad" and use the weighted version of LLL.

Expanders

For each $S \subset V$ (connected) of size $|S| \leq \frac{1}{2}|V|$, let A_{S} be the event that S "fails": $\quad\left[E_{1}(S, \bar{S})<\beta\left(\frac{1}{2}-\varepsilon\right)|S|\right] \vee\left[E_{2}(S, \bar{S})<\beta\left(\frac{1}{2}-\varepsilon\right)|S|\right]$

It is: $\quad \operatorname{Pr}\left[E_{i}(S, \bar{S})<\beta\left(\frac{1}{2}-\varepsilon\right)|S|\right]=\operatorname{Pr}\left[\beta \frac{1}{2}|S|-E_{i}(S, \bar{S})>\varepsilon \beta|S|\right]$
It is like throwing $\beta / S /$ coins and $\left|E_{1}\right| \geqslant \mid$ head $|s|=\left|E_{1}^{\prime}\right|,\left|E_{2}\right| \geqslant \mid$ tail|s| $\left|=\left|E_{2}^{\prime}\right|\right.$.

1. $\operatorname{Pr}\left[\beta \frac{1}{2}|S|-E_{i}(S, \bar{S})>\varepsilon \beta|S|\right] \leq \operatorname{Pr}\left[\beta \frac{1}{2}|S|-E_{i}^{\prime}(S, \bar{S})>\varepsilon \beta|S|\right]$
2. $\operatorname{Pr}\left[\beta \frac{1}{2}|S|-E_{2}^{\prime}(S, \bar{S})>\varepsilon \beta|S|\right]_{E_{1}(S, \bar{S})++\bar{E}_{2}(S, \bar{S})=\beta(S)} \operatorname{Pr}\left[E_{1}^{\prime}(S, \bar{S})-\beta \frac{1}{2}|S|>\varepsilon \beta|S|\right]$

So:

$$
\operatorname{Pr}\left[A_{S}\right] \leq \sum_{i=1,2} \operatorname{Pr}\left[\beta \frac{1}{2}|S|-E_{1}(S, \bar{S})>\varepsilon \beta|S|\right]_{1,2} \operatorname{Pr}\left[\left|\beta \frac{1}{2}\right| S\left|-E_{i}^{\prime}(S, \bar{S})\right|>\varepsilon \beta|S|\right]
$$

Using Chernoff Bound:

$$
\operatorname{Pr}\left[A_{S}\right] \leq \operatorname{Pr}\left[\left|\frac{1}{2} \beta\right| S\left|-E_{i}^{\prime}(S, \bar{S})\right|>\varepsilon \beta|S|\right] \leq 2 e^{-\frac{\varepsilon^{2} \beta^{2} \mid S S^{2}}{3 n / 2}} \leq \frac{1}{\frac{1}{\beta} \frac{|S|}{n}} \leq e^{-\frac{2}{3} \varepsilon^{2} \beta|S|}=p^{|S|}
$$

Expanders

G is r-regular. It is known... that in this case every vertex lies in at

$$
\text { most }\binom{r t t^{\prime}}{t}^{\prime}<\left(\frac{e r t}{t}\right)^{r}=(e r)^{t} \text { connected subsets of size t. }
$$

A_{s} is dependent to at most $(e r)^{\prime}|S|$ other events $A_{s^{\prime}}$ for which $/ S^{\prime} \mid=t$
We have

- $\operatorname{Pr}\left[A_{S}\right] \leq 2 e^{-\frac{2}{3} \varepsilon^{2} \beta|S|}=p^{|S|}$
- $\sum_{A_{S} \in D_{S}}(2 p)^{t_{S}} \leq S\left|\cdot \sum_{t=1}^{n / 2}(2 p)^{t}(e r)^{t}=|S| \sum_{t=1}^{n / 2}\left(2 r e^{1-\frac{2}{3} \varepsilon^{2}-\beta}\right)^{t}<\frac{|S|}{4}\right.$
as long as $2 r e^{1-\frac{2}{3} \varepsilon^{2} \beta}<1 / 5\left(\right.$ for $\left.\beta>\frac{3 \log (10 e r)}{2 \varepsilon^{2}}\right)$
The weighted version of LLL does the work

